Magnetic Nanoparticles in the Central Nervous System: Targeting Principles, Applications and Safety Issues.
نویسندگان
چکیده
One of the most challenging goals in pharmacological research is overcoming the Blood Brain Barrier (BBB) to deliver drugs to the Central Nervous System (CNS). The use of physical means, such as steady and alternating magnetic fields to drive nanocarriers with proper magnetic characteristics may prove to be a useful strategy. The present review aims at providing an up-to-date picture of the applications of magnetic-driven nanotheranostics agents to the CNS. Although well consolidated on physical ground, some of the techniques described herein are still under investigation on in vitro or in silico models, while others have already entered in-or are close to-clinical validation. The review provides a concise overview of the physical principles underlying the behavior of magnetic nanoparticles (MNPs) interacting with an external magnetic field. Thereafter we describe the physiological pathways by which a substance can reach the brain from the bloodstream and then we focus on those MNP applications that aim at a nondestructive crossing of the BBB such as static magnetic fields to facilitate the passage of drugs and alternating magnetic fields to increment BBB permeability by magnetic heating. In conclusion, we briefly cite the most notable biomedical applications of MNPs and some relevant remarks about their safety and potential toxicity.
منابع مشابه
A Simple Thermal Decomposition Method for Synthesis of Co0.6Zn0.4Fe2O4 Magnetic Nanoparticles
Magnetic nanoparticles attracted a great deal of attention in the medical applications due to their unique properties. The most exceptional property of magnetic particles is their response to a magnetic force, and this property has been utilized in applications such as drug targeting, bioseparation, contrast agents in magnetic resonance imaging (MRI) and heating mediators for cancer therapy. In...
متن کاملRecent analytical applications of magnetic nanoparticles
Analytical chemistry has experienced, as well as other areas of science, a big change due to the needs and opportunities provided by analytical nanoscience and nanotechnology. Now, nanotechnology is increasingly proving to be a powerful ally of analytical chemistry to achieve its objectives, and to simplify analytical processes. Moreover, the information needs arising from the growing nanotechn...
متن کاملNon Invasive Brain Stimulation by Transcranial Magnetic Stimulation (TMS): Principles and Applications
Magnetic brain stimulation used as a method of psychological interventions in the treatment of diseases. This method functions used in the treatment of clinical disorder such as speech and movement disorders caused by stroke, tinnitus, Parkinson's disease, nervous tics. Applications in the field of psychological therapy, it is possible to stimulate specific brain area involved in certain mental...
متن کاملSynergistic effects of Radiofrequency Hyperthermia temperature rate with magnetic Graphene oxide nanoparticles drug targeting on CT26 colon cancer cell line
Introduction: Graphene oxide (GO) sheets are carbon-networking nanomaterials offering excellent potential for drug delivery platforms due to hydrophobic interactions and high drug-loading efficiency. Superparamagnetic iron oxide nanoparticles can be used in certain applications such as cell labeling, drug delivery, targeting, magnetic resonance imaging and hyperthermia. Due t...
متن کاملDesign of the optimal magnetic field in application of functionalized CNT-based drug delivery toward the cell membrane: Computational Analysis
Recently, Carbon Nano (CN) structures are widely used in medical applications, especially the detection and treatment of cancer disease. Among various types of CNs, Carbone Nano Tubes (CNTs) attracted many researchers' attention to consider them toward clinical application. Regarding the intrinsic structure of CNTs, they can be used widely in drug delivery applications. Functionalized CNTs and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecules
دوره 23 1 شماره
صفحات -
تاریخ انتشار 2017